CAPSTONE PROJECT

CORONARY HEART RISK STUDY

GREAT LEARNING – 2019-2020 BATCH III

BY SWARUP KUMAR

Capstone : CORONARY HEART RISK STUDY Business Problem Understanding

- What : Coronary artery disease develops when the major blood vessels that supply your heart with blood, oxygen and nutrients (coronary arteries) become damaged or diseased. In today's world of changing lifestyle, Coronary heart disease has become one of the key diseases to tackle.
- With the dataset provided, need to predict factors that <u>causes people to develop Coronary</u> <u>heart disease in the next 10 years</u>
- Why: Better treatment to patients can be provided by doctors, based on their habits & medical condition

Why: There is no cure for CHD. More lives can be saved if preventive actions are taken at early stage or corrective actions if at extreme level.

Capstone : CORONARY HEART RISK STUDY Business Problem Understanding

Constraints

- Dataset provided is not big, only 4240 rows of which around 645 cells with null or NA values
 - 40 rows have NA values in both glucose and cholesterol field
- Close to 50% of the total variables are Factorial in nature (sparse of 0,1)
 - previous Hypertension, gender, current Smoker, previous Stroke, BP Medication, diabetic
- ▶ 85%-15% is the distribution of Yes and No in Dependent variable (TenYearCHD)

Assumptions

- Education field mapping is 1->Illiterate,2 ->High School, 3 -> University, 4 -> Post graduate
- ► All the data is collected over a period of time from 1 common region
- Insights to be provided based on the factors in the dataset ONLY (no extrapolation)

Capstone : CORONARY HEART RISK STUDY Business Problem Understanding

Objectives

- Minimize the fatalities due to CHD i.e.
 - Correctly Predicting + ve cases of CHD (True Positive)
 - Correctly Predicting ve cases of CHD (True Negative)
 - [Type II Error] Cost of incorrect predicting of + ve cases of CHD is Higher than cost of incorrect predicting of ve cases[Type I Error]
- ► Deliverable
 - Exploratory data analysis of dataset
 - Come up with best predictive classification model on all parameters like
 - Sensitivity(Type II), Precision(True +ve/Total +ve), Kappa(chance agreement), F1(FN,FP) values

Capstone : CORONARY HEART RISK STUDY EDA (1/2)

glucose	education	BPMeds	totChol	BMI	heartrate	cigsPerDa Y	Total
388	105	53	50	19	1	29	645

Correlation Plot of CHD Dataset

male	_	-0.03	0.02	0.2	0.32	-0.05	0	0.01	0.02	-0.07	-0.04	0.06	0.08	-0.12	0.01	0.09		· 1
age	-0.03		-0.1	7-0.2	1-0.19	90.12	0.06	0.31	0.1	0.26	0.39	0.21	0.14	-0.01	0.12	0.23		. ^ 0
education	0.02	-0.17	7	0.02	0.01	-0.01	-0.04	-0.08	-0.04	-0.02	-0.13	-0.06	-0.14	-0.05	-0.04	-0.05		0.0
curSmoker	- 0.2	-0.2	0.02		0.77	-0.05	-0.03	-0.1	-0.04	-0.05	-0.13	0.11	I-0.17	0.06	-0.08	0.02	_	0.6
cigsPerDay	-0.32	2 <mark>-0.1</mark> 9	0.01	0.77	7	-0.05	-0.03	-0.07	-0.04	-0.03	-0.09	-0.08	-0.09	0.08	-0.08	0.06		
BPMeds	-0.0	50.12	-0.01	-0.05	-0.05		0.12	0.26	0.05	0.08	0.25	0.19	0.1	0.02	0.05	0.09		0.4
prevStroke	- 0	0.06	-0.04	-0.03	-0.03	0.12		0.07	0.01	0	0.06	0.05	0.03	-0.02	0.02	0.06		
prevHyp	0.01	0.31	-0.0	8-0.1	-0.0	70.26	0.07		0.08	0.16	0.7	0.62	0.3	0.15	0.09	0.18		0.2
diabetes	0.02	0.1	-0.04	-0.04	-0.04	0.05	0.01	0.08		0.04	0.11	0.05	0.09	0.05	0.62	0.1		0
totChol	-0.0	70.26	-0.02	-0.05	-0.03	0.08	0	0.16	0.04		0.21	0.16	0.12	0.09	0.05	0.08		0
sysBP	-0.04	0.39	-0.1	3-0.1	3-0.09	90.25	0.06	0.7	0.11	0.21		0.78	0.33	0.18	0.14	0.22		-0.2
diaBP	-0.06	60. <mark>2</mark> 1	-0.0	6-0.1	1-0.06	50.19	0.05	0.62	0.05	0.16	0.78		0.38	0.18	0.06	0.15		
BMI	-0.08	30.14	-0.1	4-0.1	7-0.09	9 0.1	0.03	0.3	0.09	0.12	0.33	0.38		0.07	0.09	0.08		-0.4
heartRate	-0.12	2 -0.01	-0.0	50.06	60.08	0.02	-0.02	0.15	0.05	0.09	0.18	0.18	0.07		0.09	0.02		
glucose	0.01	0.12	-0.04	-0.0	6-0.06	3 0.05	0.02	0.09	0.62	0.05	0.14	0.06	0.09	0.09		0.13		-0.6
TenYearCHD	-0.09	0.23	-0.0	5 0.02	0.06	0.09	0.06	0.18	0.1	0.08	0.22	0.15	0.08	0.02	0.13			-0.8
													I					-0.0
	mal	е	cu	rSm	oker		pr	evH	ур	s	ysBl	Ρ	BMI	gl	uco	se		-1

- 1. No correlation found > 92%
- 2. Multicollinearity doesn't exist and hence PCA
 - and other treatment not required

Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY EDA (2/2)

Outliers exist for numerical variables like:

BMI, cigsPerDay, diaBP, glucose, heartrate, sysBP, totChol Find outliers using cooks distance and then replacing them with NA

glucose	sysBP	diaBP	totChol	BMI	heartrate	cigsPerDa Y	Total
398	10	6	55	26	1	39	698

Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Modelling approach used and Why (1/2)

Capstone : CORONARY HEART RISK STUDY

Modelling approach used and Why(2/2)

SI No	Modelling Technique	Why	Remarks
1	Logarithm Regression (with boost)	Binary classification	
2	Naïve Bayes	Binary classification, more factorial variables, faster	Learns over time
3	KNN	K Neighbours (for comparison purpose)	Since outliers are treated can be used or else performance reduces
4	Random Forest	To get more insights like variable importance	Can handle missing values automatically and
5	SVM Classification	Works well with small data and for imbalanced data	
6	eXtreme Gradient Boosting	Ensemble method for quick implementation, extreme computation limits for scalability	Trees are built in series and compared on weighted leaf scores
7	Gradient Boosting	Ensemble method	
8	CTREE	To get decision nodes	Similar insights like CART
9	CART	To get decision nodes	Comparatively better performance than CTREE

Q Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Cook's distance Outlier + NA treatment (mice)

BMI Influence Plot

Circle size is proportial to Cook's Distance

Total Cholestoral Influence Plot

Glucose Influence Plot

Systolic BP Influence Plot

Circle size is proportial to Cook's Distance

missing data

Histogram of

Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Outlier capping + mice imputation of NA

10 Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Observations from Model execution

- No models were overfitting when outlier capping was done, CV of 10 fold helped
- Random forest tends to overfit when dropped NAs dataset is passed
- KNN and SVM were overfitting on dataset with cooks distance treated outliers
- Gradient Boosting was the best performing model on dataset with dropped NA values and dataset with capped outliers

- CTREE model gave highest sensitivity while using mForest method but Kappa value < 0.2</p>
- xgBoost was overfitting maybe due to insufficient tuning of hyper parameters and scaling of variables
- Gradient boosting took comparatively less time for model execution on capped outliers dataset
- Naïve Bayes performed comparatively well on all datasets except on dropped NAs

Note: Refer to Appendix for Source code and HTML output

Capstone : CORONARY HEART RISK STUDY Confusion Matrix

		0	1
CTREE	0	811	95
	1	267	98
Naïve Bayes	0	832	90
	1	246	103
KNN	0	738	90
	1	340	103
CART	0	830	103
	1	248	90
GBM	0	872	89
	1	206	104
XGBoost	0	955	123
	1	123	70

12 Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY varImp Plots from various Modelling Technique

13 Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Model Metrics

Technique	Sensitivity	Precision	Карра	F1	Specificity	Accuracy	Exec Time (min)
Logit Boost	0.31	0.24	0.12	0.27	0.82	0.74	1.13
SVM	0.52	0.19	0.07	0.28	0.6	0.59	4.97
Naïve Bayes	0.53	0.28	0.21	0.36	0.75	0.72	0.42
KNN	0.57	0.25	0.17	0.34	0.69	0.67	2.60
xgBoost	0.4	0.34	0.24	0.37	0.85	0.78	0.42
Random Forest	0.4	0.31	0.22	0.35	0.84	0.77	2.13
CTREE	0.51	0.27	0.19	0.35	0.75	0.71	2.70
CART	0.46	0.26	0.19	0.34	0.77	0.72	0.25
GBM	0.54	0.33	0.28	0.41	0.8	0.76	9.14

Note: Refer to (Annex 1)ModelMetrics_alldatasets.xlsx for consolidated values from all datasets

14 Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Best Performing model and metrics

- Naïve Bayes is the preferred model on most datasets
- Confusion Matrix

	0(-v	ve)	1(+ve)		
0(-ve)	832(TN)	90(FP)		
1(+ve)	246(FN)	103(TP)		
Other Metrics			Value		
Sensitivity/Recall		0.53			
Precision		0.29			
Карра		0.23			
F1			0.38		
Specificity		0.77			
Accuracy		0.73			
Model Execution tim	e	0.62 min			

1.5 Internal | Swarup Kumar | 17-Jan-2020

© Robert Bosch Engineering and Business Solutions Private Limited 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

Capstone : CORONARY HEART RISK STUDY Best Performing model and metrics

Gradient Boosting was the best performing model

Confusion Matrix

	0(-ve)	1(+ve)
0(-ve)	872(TN)	89(FP)
1(+ve)	206(FN)	104(TP)

Other Metrics	Value
Sensitivity/Recall	0.54
Precision	0.33
Карра	0.28
F1	0.41
Specificity	0.8
Accuracy	0.76
Model Execution time	9 min

► ROC

16 Internal | Swarup Kumar | 17-Jan-2020

© Robert Bosch Engineering and Business Solutions Private Limited 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

BOSCH

Capstone : CORONARY HEART RISK STUDY

CTREE model

17 Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY CART model

X0 .57 .43 100% no age < 46 yes 3 No X1 .47 .53 66% prevHyp1 < 0.006 6 7 X0 X1 .56 .44 .37 .63 34% 32% glucose < 68 male1 < 0.003 13 X1 .45 .55 19% sysBP < 118 2 15 12 26 27 14 X0 X0 X0 X0 X1 X1 .78 .22 .69 .31 .66 .34 .37 .63 .70 .30 .33 .67 34% 16% 5% 13% 3% 29%

18 Internal | Swarup Kumar | 17-Jan-2020

Jan-2020

Capstone : CORONARY HEART RISK STUDY Insights from Analysis (Top 10 causes of CHD)

- 1. Age: As we age, plaque builds up. In our case, age group of 40-50 followed by 60-70 is found to be having higher chances of CHD
- 2. **Sex**: Male / Female.

Men were found to have higher chances of CHD among >46 age group (19%) while Women >54 had higher chances if CHD

3. Systolic blood pressure: Amount of pressure in the arteries during the contraction of the heart muscle.

Higher systolic BP (>114), higher the value higher chances of CHD

- 4. Total Cholesterol: It is the waxy substance found in the blood.
 Higher the cholesterol (>229) levels higher the fatty deposits in the blood
- 5. Glucose: Is simple sugar, a sub category of Carbohydrates. Over time, higher glucose levels (>68)leads to greater accumulation of fat ,which raises risk of CHD

6. cigsPerDay: Carbon monoxide, nicotine and other substance in tobacco smoke can promote clumping platelets and then block coronary arteries.

Higher the cigarettes (>9 per day) smoked higher the chances of CHD

7. Diastolic blood pressure: The pressure in the arteries, when the heart rests and beats. This is the time when the heart fills with blood and gets oxygen.

Higher the value (>90), the person has high blood pressure

- 8. prevHyp: Past history of having high blood pressure. People who had past history were found to have higher chances (32%) of CHD
- 9. Heartrate: Speed of the heartbeat measured by the number of contractions per minute. Heartrate > 100 higher chances of CHD
- 10. BMI: Higher BMI (>24) meant higher cholesterol and high blood pressure. People who were overweight had higher chances of CHD

19 Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Recommendations

- Men above 46 yrs, have to maintain sysBP<160 or else chance of CHD is 80%</p>
- Female above 54 years to maintain sysBP < 114 + hypertension or will have 60% chance of CHD
- People older than 46 yrs with previous history of Hypertension to maintain glucose level under 68 or else chance of CHD is 29%
- People above 46 yrs with sysBP <114 to either quit smoking or reduce (with 20 cigs / day to have 70% chance of CHD)</p>
- People below 46 years of age to maintain cholesterol level under 229 mg/dL & quit or reduce smoking (<9 cigs/day)</p>
 - In addition, people who were Underweight to absolutely quit smoking (30% chance to have CHD)
- Factors that did not have major impact on CHD were:
 Undergoing BP medication (Yes/No)
 Has a history of stroke (Y/N)
 Education field

Suggestions for data collection

- ▶ Values of important fields like **Cholesterol, glucose** cannot be left blank
- NA values in education, BP Medication history(Y/N) is of little significance (can be removed totally)
- Other factors causing CHD to be captured instead for ex: lifestyle, alcohol consumption

20 Internal | Swarup Kumar | 17-Jan-2020

Capstone : CORONARY HEART RISK STUDY Appendix

SI No	Description	File name
1	Summary of all model metrics	ModelMetrics_alldatasets.xlsx
2	Source code of cookdistance + mice NA	Capstone_HeartDiseaseRisk_cMice.Rmd
3	Html Knit of cookdistance + mice NA	Capstone_HeartDiseaseRisk_cMice.html
4	Source code of capping + mice NA	Capstone_HeartDiseaseRisk_cdlookr.Rmd
5	Html Knit of capping + mice NA	Capstone_HeartDiseaseRisk_cdlookr.html
6	Source code of missForest +cooks distance	Capstone_HeartDiseaseRisk_mForest.Rmd
7	Html Knit of missForest +cooks distance	Capstone_HeartDiseaseRisk_mForest.html
8	Html Knit of dropped NA values	Capstone_HeartDiseaseRisk_dropNA.html

